Investigating the Strong Nuclear Force with the OSG

Connor Natzke

Mar. 14, 2022

There are four fundamental forces in nature

Gravity

Binds the Solar System together

Electromagnetic

Binds atoms together

Strong

Binds the atomic nucleus together

Weak

Radioactive decay

There are four fundamental forces in nature

Gravity Binds the Solar System together

Electromagnetic Binds atoms together

Strong

Binds the atomic nucleus together

Radioactive decay

The smaller something is the larger the microscope needs to be

Radiation emitted from atomic nuclei carries information about the structure

Radiation emitted from atomic nuclei carries information about the structure

Radiation emitted from atomic nuclei carries information about the structure

Require energy dependent corrections

Detectors require correction factors found by mapping an energy surface

Map surface via Monte Carlo simulation

41 points required to map surface

- 3 simulations per point
- 1e9 events per simulation
- ~400 CPU per simulation

Detectors require correction factors found by mapping an energy surface

Map surface via Monte Carlo simulation

41 points requested

- 3 simulations per point
- 1e9 events per simulation
- ~400 CPU per simulation

~50,000 CPU hours = 5.7 years!

OSG User School 2019

One simulation of 1e9 events broken up into 1000 simulations of 1e6 events

One simulation of 1e9 events broken up into 1000 simulations of 1e6 events

DAGMan handled workflow

Python script created DAG file

Total workflow took ~24 hours

DAGMan was good, but not perfect

Jobs would fail randomly

File transfers, bad simulations, etc

Automation reliant on my ability as a programmer

Large memory footprint on submit node > 400 GB

DAGMan was good, but not perfect

Converted workflow to Pegasus for file management, transfers, and error handling

Jobs would fail randomly

Retried automatically!

Automation built in

File transfers, clean up, simpler inputs, etc

Smaller memory footprint on submit node

< 200 GB

Pegasus allowed for a faster and more robust workflow

Pegasus allowed for a faster and more robust workflow

Total workflow takes ~4 hours!

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

```
1 [simulation]
2 z=13
3 a=34
4 g1=1193
5 g2=2588
6 r=145
```

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

```
1 [simulation]
2 z=13
3 a=34
4 g1=1193
5 g2=2588
6 r=145
```

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

```
1  [simulation]
2  z=13
3  a=34
4  g1=1193
5  g2=2588
6  r=145
```

The OSG has provided a more than 40x increase in simulation speed

Standard Computation OSG Workflow

Surface points 19 61

Wall time 168 hrs / pt 4 hrs / pt

File management *Manual Automatic*

Access to the OSG has changed how I approach expensive computational problems

Total Wall Hours:

135k hours~15 years!

Total Jobs: 590,000

Thank you to everyone who helped me develop my workflow!

Lauren Michael

Mats Rynge

Connor Natzke cnatzke@mines.edu